3.4.100 \(\int \cot ^4(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [400]

3.4.100.1 Optimal result
3.4.100.2 Mathematica [C] (verified)
3.4.100.3 Rubi [A] (verified)
3.4.100.4 Maple [B] (verified)
3.4.100.5 Fricas [B] (verification not implemented)
3.4.100.6 Sympy [F(-1)]
3.4.100.7 Maxima [F]
3.4.100.8 Giac [F]
3.4.100.9 Mupad [F(-1)]

3.4.100.1 Optimal result

Integrand size = 25, antiderivative size = 112 \[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {(3 a-b) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{3 f}-\frac {(a+b) \cot ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{3 f} \]

output
a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+1/3*(3*a-b 
)*cot(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f-1/3*(a+b)*cot(f*x+e)^3*(a+b+b*ta 
n(f*x+e)^2)^(1/2)/f
 
3.4.100.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.58 (sec) , antiderivative size = 100, normalized size of antiderivative = 0.89 \[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=-\frac {2 (a+b) \cot ^3(e+f x) \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{2},-\frac {1}{2},\frac {a \sin ^2(e+f x)}{a+b}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{3 f (a+2 b+a \cos (2 (e+f x))) \sqrt {\frac {a+b-a \sin ^2(e+f x)}{a+b}}} \]

input
Integrate[Cot[e + f*x]^4*(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(-2*(a + b)*Cot[e + f*x]^3*Hypergeometric2F1[-3/2, -3/2, -1/2, (a*Sin[e + 
f*x]^2)/(a + b)]*(a + b*Sec[e + f*x]^2)^(3/2))/(3*f*(a + 2*b + a*Cos[2*(e 
+ f*x)])*Sqrt[(a + b - a*Sin[e + f*x]^2)/(a + b)])
 
3.4.100.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3042, 4629, 2075, 376, 25, 445, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sec (e+f x)^2\right )^{3/2}}{\tan (e+f x)^4}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\cot ^4(e+f x) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\cot ^4(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\frac {1}{3} \int -\frac {\cot ^2(e+f x) \left ((2 a-b) b \tan ^2(e+f x)+(3 a-b) (a+b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\frac {1}{3} \int \frac {\cot ^2(e+f x) \left ((2 a-b) b \tan ^2(e+f x)+(3 a-b) (a+b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\frac {1}{3} \left (\frac {\int \frac {3 a^2 (a+b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{a+b}+(3 a-b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{3} \left (3 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+(3 a-b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{3} \left (3 a^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+(3 a-b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{3} \left (3 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+(3 a-b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )-\frac {1}{3} (a+b) \cot ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

input
Int[Cot[e + f*x]^4*(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(-1/3*((a + b)*Cot[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2]) + (3*a^(3/2) 
*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] + (3*a - b) 
*Cot[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/3)/f
 

3.4.100.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
3.4.100.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(368\) vs. \(2(98)=196\).

Time = 3.74 (sec) , antiderivative size = 369, normalized size of antiderivative = 3.29

method result size
default \(-\frac {\left (4 \cos \left (f x +e \right )^{2} \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a +3 \sin \left (f x +e \right ) a^{2} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \cos \left (f x +e \right )-3 \sin \left (f x +e \right ) a^{2} \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right )-3 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, a +\sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b \right ) \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \cot \left (f x +e \right )^{3}}{3 f \sqrt {-a}\, \left (b +a \cos \left (f x +e \right )^{2}\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(369\)

input
int(cot(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/3/f/(-a)^(1/2)*(4*cos(f*x+e)^2*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f* 
x+e))^2)^(1/2)*a+3*sin(f*x+e)*a^2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)-4*sin(f*x+e)*a)*cos(f*x+e)-3*sin(f*x+e)*a^2*ln(4*(-a)^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a* 
cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)-3*(-a)^(1/2)*((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a+(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*b)*(a+b*sec(f*x+e)^2)^(3/2)/(b+a*cos(f*x+e)^2)/((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cot(f*x+e)^3
 
3.4.100.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 238 vs. \(2 (98) = 196\).

Time = 0.84 (sec) , antiderivative size = 597, normalized size of antiderivative = 5.33 \[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left [\frac {3 \, {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} - 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) \sin \left (f x + e\right ) + 8 \, {\left (4 \, a \cos \left (f x + e\right )^{3} - {\left (3 \, a - b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{24 \, {\left (f \cos \left (f x + e\right )^{2} - f\right )} \sin \left (f x + e\right )}, -\frac {3 \, {\left (a \cos \left (f x + e\right )^{2} - a\right )} \sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 4 \, {\left (4 \, a \cos \left (f x + e\right )^{3} - {\left (3 \, a - b\right )} \cos \left (f x + e\right )\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{12 \, {\left (f \cos \left (f x + e\right )^{2} - f\right )} \sin \left (f x + e\right )}\right ] \]

input
integrate(cot(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[1/24*(3*(a*cos(f*x + e)^2 - a)*sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256* 
(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + 
 e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 
 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - 
a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a 
^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^ 
2 + b)/cos(f*x + e)^2)*sin(f*x + e))*sin(f*x + e) + 8*(4*a*cos(f*x + e)^3 
- (3*a - b)*cos(f*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/((f 
*cos(f*x + e)^2 - f)*sin(f*x + e)), -1/12*(3*(a*cos(f*x + e)^2 - a)*sqrt(a 
)*arctan(1/4*(8*a^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 
 6*a*b + b^2)*cos(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + 
e)^2)/((2*a^3*cos(f*x + e)^4 - a^2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e 
)^2)*sin(f*x + e)))*sin(f*x + e) - 4*(4*a*cos(f*x + e)^3 - (3*a - b)*cos(f 
*x + e))*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2))/((f*cos(f*x + e)^2 - 
 f)*sin(f*x + e))]
 
3.4.100.6 Sympy [F(-1)]

Timed out. \[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Timed out} \]

input
integrate(cot(f*x+e)**4*(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Timed out
 
3.4.100.7 Maxima [F]

\[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{4} \,d x } \]

input
integrate(cot(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate((b*sec(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^4, x)
 
3.4.100.8 Giac [F]

\[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{4} \,d x } \]

input
integrate(cot(f*x+e)^4*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
integrate((b*sec(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^4, x)
 
3.4.100.9 Mupad [F(-1)]

Timed out. \[ \int \cot ^4(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^4\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \]

input
int(cot(e + f*x)^4*(a + b/cos(e + f*x)^2)^(3/2),x)
 
output
int(cot(e + f*x)^4*(a + b/cos(e + f*x)^2)^(3/2), x)